Faculty compensation at CCSF

Some progress, but more needed

Updated from January flex-day with explanatory text.

As we all know, while City College of San Francisco was under attack by the ACCJC, and under a hostile takeover by the State Chancellor's office, faculty salaries were unilaterally cut by the administration without negotiations.

While fighting to block the worst of the administration's take-backs, AFT 2121 leadership and members spent 1000s of hours supporting lawsuits filed by the City of San Francisco and the state-wide CFT against the improper actions of the ACCJC.

The leadership and members also spent countless hours working to build community support, which ultimately led to the passage of both Prop A and Free City.

AFT 2121 leadership spent countless hours working with the national AFT leadership to force the Department of Education to put the ACCJC on probation.

Today, the leadership of the ACCJC has been replaced and CCSF is fully accredited for the next 7 years.

The old college administration, which was attempting to downsize the college, has been removed.

The current administration is committed to growing the college.

At the start of the last round of negotiations, AFT 2121 made a presentation to the District similar to this one highlighting all the reasons salaries needed to be increased, including:
\% the effect of low starting salaries on recruiting,

* the effect of low ending salaries on retirement income,
\% the effect of the cost of living in San Francisco on eroding the living standards of faculty, and
\% the need to address various load factors.

All of this was obvious, but the District and the Board needed to hear it.

In the last round of negotiations, the District brought in a union-busting legal team that made bargaining contentious and ugly.

In addition, the District engaged in multiple strategies to divide faculty based on differing interests of faculty constituencies.

Their most obvious attempt was to offer FT faculty a paltry raise and nothing for the PT faculty.

The District's "last and best" offer drastically shortchanged part-time faculty and included no changes in any load factors.

The last round of negotiations lasted for more than a year and a half, with the bargaining team meeting at least once a week, spending countless additional hours in research and prep.

Even more effort and hours were spent organizing our members and building a broad coalition of faculty and community groups.

The increased strength of our union enabled the successful one-day strike.

Only after this show of unity and solidarity did the District finally started to take negotiations seriously.

By standing together, we won a significantly better contract, including a first step toward adjusting load factors.

These are the gains we made in the last round of bargaining.

all numbers are in \%s	FT	PT	FT \& PT
2015-16 restoration	3.70	0.00	3.70
raise	1.10	0.00	4.68
COLA	1.02	1.02	1.02
one-time payment of 2.16 for FT and 2.33 for PT	2.16	2.33	0.00
lookback	0.00	0.00	0.00
2016-17 raise	0.00	0.00	1.00
COLA	0.00	0.00	0.00
one-time payment of 2.16 for FT and 2.33 for PT	0.00	0.00	0.00
restore lost step	0.00	0.00	2.60-4.00
added a step	0.00	0.00	2.60-4.00
lookback	0.00	0.00	0.00
. 67 lab factors incr'd to .75	0.00	0.00	+ ?
2018-19 COLA	1.56	1.56	1.56
one-time payment of 2.17 for FT and 2.34 for PT	0.00	0.00	0.00
lookback	0.00	0.00	0.00
TOTAL INCREASE	9.54	4.91	11.96-19.96

The salary increase for all faculty in the first year of the contract, 2015/16, was 9.4\%.

Over the life of the contract, all faculty received additional salary increases.

These salary increases were larger than all but two of the Bay 10 community college districts.

Historically, we have compared CCSF salaries with the "Bay 10. ."

The Bay 10 are CCSF and the nine other Bay Area community college districts.

The stated goal, for at least three decades, has been to have CCSF salaries above the Bay 10 median. Since 2007, this goal has not been met.

Up until the 2016/17 academic year, the CCSF salary schedule had 6 columns and 16 steps. For each step, the salary increases. Once the top step is reached, the salary stays the same.

The columns indicate different levels of education, and the steps are pay increases that result from increasing years of service to the college.

The schedule shows the salary for each column, and each year of service, from 1 to 30.

The result is a set of 180 salary cells.

This was our ranking just before our most recent contract went into effect:

100 \% of faculty salaries were ranked below the Bay 10 median, and 81% were ranked $9^{\text {th }}$ or 10th.

This chart shows the new rankings after the salary increases that were retroactive to Fall 2015.

This was a significant improvement, with 20% above the Bay 10 median and another 34% ranked $6{ }^{\text {th }}$.

Under the new contract, the starting salaries of every salary column were 10.4\% higher in Fall 2016 and 12\% higher in Fall 2017.

The new contract added an additional salary step for both full-time and part-time faculty as a start toward addressing the issue of salary stagnation.

The retirement income of most faculty retiring after Spring 2016 is now 15% to 19% higher than before the most recent contract.

The contract started making progress on load factors by eliminating the 67% lab factor and making these labs 75%.

The contract also blocked the attempt by the District to require that Dean's participate directly in peer-review, that office hours be increased and that even more classes could be cut due to what the District claimed is "low enrollment."

The new contract won gains on each of the stated objectives.

This chart shows the our rankings as we start into this new round of negotiations. It reflects the CCSF salary increases that occurred in years 2 and 3 of our current contract and the salary increases that have occurred at each of the Bay 10.

There is a lot of improvement over our last starting point, but we still have a long way to go.

As we enter the current round of negotiations, the bargaining team is continuing to address the same, totally obvious, issues:

* the effect of low starting salaries on recruiting,
* the effect of salary stagnation on faculty morale and retirement income,
\% the effect of the cost of living in San Francisco on eroding the living standards of faculty, and
$\%$ the need to address various load factors.

Unlike the previous round, the District seems to be more open to discussing all of these issues.

For very simple comparisons, bar charts are sometimes helpful.

In our bargaining that is not true. Some years, CCSF is above the median and others, below. Given the complexity of the analysis, more detail is needed.

For the following analysis, we start with a "representative" faculty member on column F of the salary scale, which applies to faculty in a discipline requiring an MA degree. Every Bay 10 district has an equivalent to column F.

We start with a faculty member who was on step 7 in 2008. By starting on step 8, this person hits the salary cap this year.

This allows us to see the pattern of salary changes from the start of the ACCJC attack to today.

Each year, a full-time faculty member is supposed to move one step up on the scale.

In Fall 2009, this step increase did not occur, and all faculty were one step behind each year until the Fall, 2016. In addition, faculty were forced to take salary cuts between 2008 and 2014.

The following demonstrates the "representative" faculty under several scenarios.

The black line shows the salary of this faculty member if there had been no changes from the salary schedule in place in 2007.

The red line is the actual salary received by the faculty member each year.
From 2008 to 2014, this person lost $\$ 21,619$ from what they would have made on the 2007 salary schedule. The most recent contract succeeded in moving them above the 2007 salary schedule.

The previous chart shows the actual dollar amount of salary, but it does not show the effect of inflation on the purchasing power of those salaries.

The following three slides do that for three different measures of inflation.

The blue line shows the purchasing power of the actual salary, adjusted to reflect the "All Item" Consumer Price Index (CPI) for the U.S. as a whole. This is the index that is most commonly used to measure "real purchasing power."

By this measure, the faculty member could buy only $\$ 16,423$ more as a result of moving up the salary scale over nine years.

The cost of living has increased significantly faster in San Francisco than for the country as a whole. The Bureau of Labor Statistics calculates CPIs for several metropolitan areas, including San Francisco.

The new blue line shows the purchasing power of the actual salary based on the "All Items" CPI for San Francisco. Using this measure, there was no increase in purchasing power until the most recent contract came into force.

Housing prices and rental cost have risen even faster in San Francisco than for the country as a whole. The BLS calculates a CPI for the cost of rentals.

The new blue line shows the purchasing power of the actual salary based on the "Rental Cost" CPI for San Francisco. Using this measure, even after moving up nine steps in the salary column, this person could buy no more in 2018 than they could in 2008.

As painful the previous slides appear, if someone on Column F had been at the top step in 2008, they would have seen no salary increase until the most recent contract, which added an additional step. As a result, despite a salary increase over the past three years of 18% in nominal dollars, the purchasing power of their current salary is:

About 0.8\% lower than in 2007, based on the U.S. All Item CPI, About 6.9% lower than in 2007, based on the S.F. All Item CPI, and fully 18.5% lower than in 2007, based on the cost of rent in S.F.

The pattern is the same for all of the salary columns.
Obviously, more needs to be done to increase the salaries of all faculty at CCSF.

In the past, the stated goal of the CCSF salary schedule was that all full-time faculty should receive a salary at or above the Bay 10 median salary for the same rank.

The median of a distribution is the mid-point: half of the distribution is above that point and half are below that point.

If the distribution has an odd number of categories, the median is the middle category.

If the distribution has an even number of categories, the median is the middle-point between the two middle categories.

Understanding how the median is calculated is important for understanding the following slides.

The following slide shows the ranking, relative to the other Bay 10 schools, for faculty members on column F, with varying years of service.

Faculty on column F at CCSF have salaries below the Bay 10 median for all but five years. The salary for step 1 is the $9^{\text {th }}$ lowest, and they end at the rank of 6 th.

In all of this analysis, we are comparing each of the 180 salary schedule cells at CCSF with the corresponding salary cell at each of the other nine Bay 10 districts.

In a distribution of 10 community college districts, the median salary of each salary cell is the mid-point between the salary cells of the districts ranked $5^{\text {th }}$ and $6^{\text {th }}$.

The CCSF salary schedule has six columns and 17 uniquely different salary levels, or "steps."

Some the districts in the Bay 10 comparison have fewer steps and some have more.

In addition, the dollar amount of salary steps vary by district and, within districts, by salary column.

As a result, the districts that rank $5^{\text {th }}$ and $6^{\text {th }}$ change in an irregulate pattern over 30 years of service.

For column F, the districts that determine the median are:

Years	Rank $\# 5$	Rank $\# 6$
$1-3$	Chabot	Foothill
$4-7$	West Valley	Foothill
8	Foothill	West Valley
9	San Jose	West Valley
$10-13$	West Valley	San Jose
$14-15$	West Valley	CCSF
$16-17$	Foothill	West Valley
18	West Valley	Peralta
19	Peralta	West Valley
20	Peralta	Marin
21	Marin	CCSF
$21-30$	West Valley	CCSF

The previous chart demonstrated we are failing to meet the goal of a salary above the Bay 10 median for faculty on column F .

But that slide does not show how badly we are failing.

The next slide demonstrates, in dollar terms, how far below the Bay 10 median salary faculty on column F are paid.

The shifting of the districts in $5^{\text {th }}$ and $6^{\text {th }}$ place explains this rather odd looking pattern.

One way to overcome this unstable pattern is to focus on the Bay 10 average salary, rather than the median.

In many cases, the median is a much better measure for comparison (Bill Gates).

But in this case, the median and average of the distribution of Bay 10 salaries are almost the same.

Using the difference between CCSF salaries and the Bay 10 average helps to clarify the situation.

For column F, CCSF salaries start below the Bay 10 average, but increase at about the same rate as the average until year 8 .

From year 8 to 17 the salaries rise much faster than the average. This allows CCSF salaries to reach their peak much sooner than many other districts. (More on this later.)

CCSF column F salaries are above the Bay 10 average for years 14 to 24.

So far, we have been looking at the patterns for column F.
The remaining columns in the salary schedule are:
F plus 15 (Disciplines requiring a MA: BA plus 45 units with MA)
F plus 30 units
F plus 45 units
Column G: Ph.D. or MA plus 60 units

The following slides provide average salary comparisons for those salary ranks.

This pattern is very similar to that for Column F, up until year 25 .

For this column, the overall pattern is similar, but the starting salary is further below the Bay 10 average, and this column is above the Bay 10 average for only 3 years.
(Notice that the vertical scale is different than the previous slide.)

The starting salary for this column is further behind the Bay 10 average, and in the last five years, the salary falls even further behind. The salary in this column reaches the average in only one year.
(Note that the vertical scale is larger again.)

Note that the vertical axis has changed again, and that the closest any salary step gets to the average is a shortfall of $\$ 2,660$. This column starts $\$ 7,500$ below the average and ends \$11,300 below.

The situation is very much the same for part-time faculty as well. They have experienced the same step freeze and salary cuts as full-time faculty.

In addition, their original salaries were even lower, as a result of the pro rata, and their movement up salary steps is much slower.

Maintaining a high pro rata mitigates this a little.

Maintaining a high pro rata helps to insure that retiring full-time faculty will be replaced by new full-time faculty.

It is clear from these comparisons, that as the level of education of the faculty increases, they fall further behind similar faculty at the Bay 10 peer institutions.

This is an issue AFT 2121 and the District had been incrementally addressing prior to the ACCJC attack and are starting to address again.

Contract and Regular Faculty Annual Rates Salary Schedule

Effective 8/1/98							
	$\begin{array}{\|c\|} \hline \text { Steps } \\ \text { Former } \\ \hline \end{array}$	Present	C BA +15 or Cert +30	D BA+30 or Cert+45	E $B A+45$ or Cert+60		$\begin{gathered} \hline \mathrm{G} \\ \mathrm{PhD} \end{gathered}$
	1	1					
	2	2					
	3	3					
	4	4					
	5	5	34990				
	6	6	36839	36839			
	7	7	38690	38690	38690		
	8	8	40540	40540	40540	40540	
	9	9	42391	42391	42391	42391	
	10	10	44241	44241	44241	44241	44241
	11	11	46090	46090	46090	46090	46090
	12	12	47942	47942	47942	47942	47942
	13	13	49791	49791	49791	49791	49791
	14	14	51641	51641	51641	51641	51641
	15	15		53491	53491	53491	53491
	16	16			55342	55342	55342
	17	17				57192	57192
18-1	18	18				59042	59042
18-2	19	19				59953	59953
18-3	20					\downarrow	\downarrow
A-1	21	20				60893	60893
A-2	22	21				61803	61803
A-3	23					\downarrow	\downarrow
B-1	24	22				62742	62742
B-2	25	23				63654	63654
B-3	26					\downarrow	\downarrow
C-1	27	24				64593	64593
C-2	28	25				65503	65503
C-3	29					\downarrow	\downarrow
D-1	30	26				66442	66442
D-2	31	27					68262
Number equivalents	of full ste nts		10	10	10	14	14
Years of s maximum	service to m	o salary	10	10	10	23	23

One of the issues AFT 2121 addressed during the last negotiations and is addressing again in the current negotiations is retirement income.

CaISTRS retirement benefits are calculated using this formula:

$$
\begin{gathered}
B=a * W_{f} * S \\
a=\text { age factor } \\
W_{f}=\text { "final wage" } \\
S=\# \text { of years of service } \\
B=0.02(\$ 6,000) 25=\$ 3,000
\end{gathered}
$$

Age factors: 2@60 (hired before 2013)

age	55	1.40	60	2.00
	56	1.52	61	2.13
57	1.64	62	2.267	
	58	1.76	63	2.400
	59	1.88	>63	2.400

$\mathrm{W}_{\mathrm{f}}=$ average of highest three consecutive years of salary. (highest one year if 25 years of service or more)

A decade ago, the average years of service of CaISTRS community college retirees was about 20 years.

The CCSF salary schedule was designed to allow reaching the maximum salary earlier in the 30-year salary schedule.

For all full-time salary columns, salaries stop increasing at step 17. (It is step 13 for part-time.)

The average years of service for CaISTRS community college retirees has now increased to about 23 years.

This issue also needs to be addressed.

As this analysis has demonstrated, salary comparisons with the other Bay 10 districts are very complex.

The bargaining team has researched this complexity in detail.

The CCSF salary schedule has 17 uniquely different salary levels, or "steps."

Some the districts in the Bay 10 comparison have fewer steps and some have more, with the minimum being 12 and the maximum being 23 , which also occur at different points in a 30 year career.

The dollar amount of salary steps vary by district and, within districts, by salary column.

In addition, some districts have fewer columns.

Different districts have different numbers of salary columns, and the requirement for moving between columns is also different.

	Chabot	Contra	Foothill				San Jose	San	West Valley	San
	Las Positas	Costa	DeAnza	Ohlone	Marin	Peralta	Evergreen	Mateo	Mission	Francisco
Column analysis										
Number of distinct salary columns (see separate sheets)	4	6	5	6	5	5	6	5	6	6
Number of potential salary increases by moving columns	3	5	4	5	4	4	5	4	5	5
Amount of increase from column to column at Step 1. (Note: Salary increase from column to column is the same for all steps at all but Marin and San Jose. For Marin the variation is minor. For San Jose the variation is very large.)	$\begin{gathered} \mathrm{E} \text { to } \mathrm{F} \\ \mathbf{\$ 4 , 3 7 0} ; \\ \mathrm{F} \text { to } \mathrm{F}+30 \\ \mathbf{\$ 3 , 8 3 0}: \\ \mathrm{F}+30 \text { to } \mathrm{PhD}, \\ \mathbf{\$ 5 0 6 1} \end{gathered}$	$\begin{gathered} \hline E \text { to } F \\ \mathbf{\$ 2 , 7 9 6} ; \\ \text { F to F+15 } \\ \mathbf{\$ 2 6 7 6} ; \\ \mathrm{F}+15 \text { to } \\ \mathrm{F}+30 \\ \mathbf{\$ 2 , 7 4 8} ; \\ \mathrm{f}+30 \text { to } \\ \mathrm{f}+45 \\ \mathbf{\$ 2 , 6 7 6} ; \\ \mathrm{F}+45 \text { to } \\ \mathrm{F}+60 \\ \mathbf{\$ 2 , 7 7 2} \\ \hline \end{gathered}$	All column changes= \$3055	E to F $\mathbf{\$ 3 , 8 4 0} ;$ F to $F+30$ $\mathbf{\$ 2 , 5 5 0} ;$ $F+30$ to $F+45$ $\mathbf{\$ 1 , 2 8 0 ;} ;$ $F+45$ to $F+60$ $\mathbf{\$ 1 , 2 8 0} ;$ F+60 to PhD $\mathbf{\$ 2 , 5 5 0}$	$\begin{gathered} E \text { to } F \\ \mathbf{\$ 5}, 943 ; \\ \text { F to } \mathrm{F}+30 \\ \mathbf{\$ 2 , 8 7 4} ; \\ \mathrm{F}+30 \text { to } \mathrm{F}+60 \\ \mathbf{\$ 2 , 8 1 8} ; \\ \mathrm{F}+60 \text { to } \mathrm{PhD} \\ \mathbf{\$ 2}, \mathbf{3 7 5} \end{gathered}$	All column changes= \$3080	E to F $\mathbf{\$ 2 , 5 5 5 ;}$ F to F+15 $\mathbf{\$ 2 , 5 5 5 ;}$ $\mathrm{F}+15$ to $\mathrm{F}+30$ $\mathbf{\$ 2 , 7 9 3} ;$ $\mathrm{F}+30$ to $\mathrm{F}+45$ $\mathbf{\$ 2 , 7 9 6} ;$ $\mathrm{F}+45$ to PhD $\mathbf{\$ 2 , 5 3 7}$	$\begin{gathered} E \text { to } F \mathbf{\$ 3 , 3 2 4} ; \\ \text { F to } \mathrm{F}+45 \\ \mathbf{\$ 1 , 6 6 8 ;} \\ \mathrm{~F}+45 \text { to } \mathrm{F}+60 \\ \mathbf{\$ 2 , 3 8 8} ; \\ \mathrm{F}+60 \text { to } \mathrm{PhD} \\ \mathbf{\$ 5}, 952 \end{gathered}$	$\begin{gathered} \mathrm{E} \text { to } \mathrm{F} \\ \mathbf{\$ 2 , 3 0 7} ; \\ \mathrm{F} \text { to } \mathrm{F}+15 \\ \mathbf{\$ 2 , 3 9 6} ; \\ \mathrm{F}+\mathbf{1 5} \text { to } \mathrm{F}+30 \\ \mathbf{\$ 2 , 4 8 3} ; \\ \mathrm{F}+30 \text { to } \mathrm{F}+45 \\ \mathbf{\$ 2 , 5 8 0} ; \\ \mathrm{F}+45 \text { to } \mathrm{PhD} \\ \mathbf{\$ 1 , 4 2 5} \end{gathered}$	$\begin{aligned} & \text { E to F } \\ & \mathbf{\$ 2 6 7 0 ;} \\ & \hline \text { Others } \\ & \$ 1335 ; \end{aligned}$
Change from column F, step 1 to highest column, step 1	\$8,890	\$10,872	\$9,164	\$7,660	\$8,067	\$12,418	\$10,681	\$10,008	\$8,884	\$5,343
Change from column F, step 30 to highest column, step 30	\$8,888	\$26,760	\$9,164	\$15,637	\$12,851	\$12,251	\$25,461	\$10,476	\$27,181	\$5,341

The salary increases that occur between columns varies by district, but what is very clear is that the increases at CCSF are the smallest.

	Chabot Las Positas	Contra Costa	Foothill DeAnza	Ohlone	Marin	Peralta	San Jose Evergreen	San Mateo	West Valley Mission	San Francisco
Step analysis										
Number of distinct salary salary increases, not counting longevity steps	15	Varies by column; E has 7; F has 8; F+15 has 9; highest 3 have 10	12	Varies by column; E has 14; F has 17; $\begin{aligned} \mathrm{F}+30 & =18 ; \\ \mathrm{F}+45 & =19 ; \\ \mathrm{F}+60 & =20 ; \\ \mathrm{PhD} & =20 \end{aligned}$	23	18	10	8	11	16
Step increase	\$2,960	$\begin{aligned} & \text { About } \\ & \$ 2,700 \end{aligned}$	\$3,055	\$2,659	$\begin{aligned} & \text { Varies by } \\ & \text { column; } \\ & \mathrm{E}=\$ 1,896 ; \\ & \mathrm{F}=\$ 2,184 ; \\ & \mathrm{F}+30=\$ 2,288 ; \\ & \mathrm{F}+60=\$ 2,392 ; \\ & \mathrm{PhD}=\$ 2,392 \end{aligned}$	$\begin{aligned} & \text { About } \\ & \$ 2,475 \end{aligned}$	Varies both by column and step. See detailed table.	About \$3,325	All steps=3.5\% of previous step; range $\mathrm{E}-1$ to PhD-12 \$2,155 to \$3,588	\$2,668
Longevity steps	$\left\{\begin{array}{c} \$ 2,960 \\ \text { at } 20,25,27 \\ \text { and } 30 \end{array}\right.$	About \$2,800 at 16,19 , 22 and 30 for highest 3 columns	none	none	none	none	$\left\|\begin{array}{c} \text { at } 14 \text { and } 17 \\ \text { for } F+30, \\ F+45 \text { and } \\ P h D ; \\ \text { at } 19 \text { for } \\ F+45 \text { and } \\ P h D \end{array}\right\|$	varies slightly by column, 11 $\begin{gathered} =\$ 3,325 ; 14= \\ \$ 4,284 ; 18= \\ \$ 4,416 ; 23= \\ \$ 3,372 ; 25= \\ \$ 3,325 \end{gathered}$	For all at $15,18,21:$ For $F+15 \& F+30$ 24 and $27 ;$ For F+45 \& PhD $30,33,36$ Each increase is 3.5% of previous step	none
Total number of potential step increases	19	$\begin{gathered} \text { Varies by } \\ \text { column } \\ \mathrm{E}=7 ; \mathrm{F}=8 ; \\ \mathrm{F}+15=9 ; \\ \mathrm{F}+30, \mathrm{~F}+45 . \\ \mathrm{F}+60=14 \end{gathered}$	12		23	18	Varies by column, $\mathrm{F}+15=10$; $\mathrm{F}+30=12$; PhD=14	13	Varies by column, E \& F=14; F+15 \& F $+30=16$; F+45 \& PhD=19	17

This chart shows all of the 180 cells in the CCSF salary schedule compared to the Bay 10 median in one chart.

As we saw in the analysis of the individual salary columns, looking at the difference from the Bay 10 average is more helpful. This will be the basis for all of the "what if" analysis after this presentation.

Scenario: Increase between salary columns and salary steps both $\$ 2670$; across the board salary increase of $\$ 5,000$; longevity steps at years 20, 25. This is an increase in direct salary costs of 9.4%.

Scenario: For contrast, this is the result of a 9.4% across the board salary increase.

This approach has the same cost, but leaves 26% of salary cells below the Bay 10 median.

Scenario: Increase between salary columns of only $\$ 2002$ and salary steps equal to $\$ 2670$; across the board salary increase of $\$ 6,000$; longevity steps at years $20,23,27$. The cost of this scenario is 9.5%, but it still leaves 4% of salary cells below the Bay 10 median and continues to undervalue the education of faculty.

Scenario: Increase between salary columns and salary steps both $\$ 2670$; across the board salary increase of $\$ 6,000$; longevity steps at years 20, 23, 27 and 30 . This is an increase in direct salary costs of 11.1%.

